Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Math Biosci Eng ; 20(2): 2847-2873, 2023 01.
Article in English | MEDLINE | ID: covidwho-2201221

ABSTRACT

Statistical modeling and forecasting of time-to-events data are crucial in every applied sector. For the modeling and forecasting of such data sets, several statistical methods have been introduced and implemented. This paper has two aims, i.e., (i) statistical modeling and (ii) forecasting. For modeling time-to-events data, we introduce a new statistical model by combining the flexible Weibull model with the Z-family approach. The new model is called the Z flexible Weibull extension (Z-FWE) model, where the characterizations of the Z-FWE model are obtained. The maximum likelihood estimators of the Z-FWE distribution are obtained. The evaluation of the estimators of the Z-FWE model is assessed in a simulation study. The Z-FWE distribution is applied to analyze the mortality rate of COVID-19 patients. Finally, for forecasting the COVID-19 data set, we use machine learning (ML) techniques i.e., artificial neural network (ANN) and group method of data handling (GMDH) with the autoregressive integrated moving average model (ARIMA). Based on our findings, it is observed that ML techniques are more robust in terms of forecasting than the ARIMA model.


Subject(s)
COVID-19 , Humans , Models, Statistical , Computer Simulation , Neural Networks, Computer , Forecasting
2.
Math Biosci Eng ; 20(1): 337-364, 2023 01.
Article in English | MEDLINE | ID: covidwho-2110349

ABSTRACT

Statistical methodologies have broader applications in almost every sector of life including education, hydrology, reliability, management, and healthcare sciences. Among these sectors, statistical modeling and predicting data in the healthcare sector is very crucial. In this paper, we introduce a new method, namely, a new extended exponential family to update the distributional flexibility of the existing models. Based on this approach, a new version of the Weibull model, namely, a new extended exponential Weibull model is introduced. The applicability of the new extended exponential Weibull model is shown by considering two data sets taken from the health sciences. The first data set represents the mortality rate of the patients infected by the coronavirus disease 2019 (COVID-19) in Mexico. Whereas, the second set represents the mortality rate of COVID-19 patients in Holland. Utilizing the same data sets, we carry out forecasting using three machine learning (ML) methods including support vector regression (SVR), random forest (RF), and neural network autoregression (NNAR). To assess their forecasting performances, two statistical accuracy measures, namely, root mean square error (RMSE) and mean absolute error (MAE) are considered. Based on our findings, it is observed that the RF algorithm is very effective in predicting the death rate of the COVID-19 data in Mexico. Whereas, for the second data, the SVR performs better as compared to the other methods.


Subject(s)
COVID-19 , Humans , Reproducibility of Results , COVID-19/epidemiology , Models, Statistical , Neural Networks, Computer , Machine Learning
3.
Advances in Human - Computer Interaction ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-2053406

ABSTRACT

Virtual Reality (VR) and Augmented Reality (AR) have revolutionized technology and taken the world by storm. They established the foundation for numerous future innovations. Virtual and augmented reality are now widely employed to improve user experiences in various areas. Over time, more and more companies and businesses have begun to use this cutting-edge technology to improve their products and services. Recently, the attention to VR and AR has exploded with the concept “Metaverse” surfacing in mainstream media. Many major companies have already set their goals in motion and are working on building the core of their metaverses. This review paper focuses on explaining the concept of the metaverse, its history, and its associated benefits. Through a survey, it helps understand people’s concerns with the metaverse and how it can impact and affect humans mentally, physically, and psychologically. The analysis of this paper can help humans prepare themselves for what the new technologies have to offer, in addition to assisting companies in building a flawless metaverse.

4.
Mathematics ; 10(11):1792, 2022.
Article in English | MDPI | ID: covidwho-1856886

ABSTRACT

Predicting and modeling time-to-events data is a crucial and interesting research area. For modeling and predicting such types of data, numerous statistical models have been suggested and implemented. This study introduces a new statistical model, namely, a new modified flexible Weibull extension (NMFWE) distribution for modeling the mortality rate of COVID-19 patients. The introduced model is obtained by modifying the flexible Weibull extension model. The maximum likelihood estimators of the NMFWE model are obtained. The evaluation of the estimators of the NMFWE model is assessed in a simulation study. The flexibility and applicability of the NMFWE model are established by taking two datasets representing the mortality rates of COVID-19-infected persons in Mexico and Canada. For predictive modeling, we consider two pure statistical models and two machine learning (ML) algorithms. The pure statistical models include the autoregressive moving average (ARMA) and non-parametric autoregressive moving average (NP-ARMA), and the ML algorithms include neural network autoregression (NNAR) and support vector regression (SVR). To evaluate their forecasting performance, three standard measures of accuracy, namely, root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) are calculated. The findings demonstrate that ML algorithms are very effective at predicting the mortality rate data.

5.
Complexity ; 2021, 2021.
Article in English | ProQuest Central | ID: covidwho-1317080

ABSTRACT

Extropy, as a complementary dual of entropy, has been discussed in many works of literature, where it is declared for other measures as an extension of extropy. In this article, we obtain the extropy of generalized order statistics via its dual and give some examples from well-known distributions. Furthermore, we study the residual and past extropy for such models. On the other hand, based on Farlie–Gumbel–Morgenstern distribution, we consider the residual extropy of concomitants of m-generalized order statistics and present this measure with some additional features. In addition, we provide the upper bound and stochastic orders of it. Finally, nonparametric estimation of the residual extropy of concomitants of m-generalized order statistics is included using simulated and real data connected with COVID-19 virus.

6.
Comput Math Methods Med ; 2020: 4296806, 2020.
Article in English | MEDLINE | ID: covidwho-647157

ABSTRACT

In the current scenario, the outbreak of a pandemic disease COVID-19 is of great interest. A broad statistical analysis of this event is still to come, but it is immediately needed to evaluate the disease dynamics in order to arrange the appropriate quarantine activities, to estimate the required number of places in hospitals, the level of individual protection, the rate of isolation of infected persons, and among others. In this article, we provide a convenient method of data comparison that can be helpful for both the governmental and private organizations. Up to date, facts and figures of the total the confirmed cases, daily confirmed cases, total deaths, and daily deaths that have been reported in the Asian countries are provided. Furthermore, a statistical model is suggested to provide a best description of the COVID-19 total death data in the Asian countries.


Subject(s)
Coronavirus Infections/epidemiology , Models, Statistical , Pneumonia, Viral/epidemiology , Algorithms , Asia , Bayes Theorem , Betacoronavirus , COVID-19 , Data Interpretation, Statistical , Hospitals , Humans , Kaplan-Meier Estimate , Likelihood Functions , Pandemics , Patient Isolation , Quarantine , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL